2:I[8047,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Column"] 3:I[2092,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Button"] 4:I[9316,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Heading"] 5:I[1162,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Flex"] 6:I[1467,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"SmartImage"] 7:I[5472,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"AvatarGroup"] 8:I[2060,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Text"] a:I[1522,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"default"] b:I[4707,[],""] d:I[6423,[],""] c:["slug","lunar","d"] 0:["bDhTX4w24JXMIopZm2OtZ",[[["",{"children":["project",{"children":[["slug","lunar","d"],{"children":["__PAGE__?{\"slug\":\"lunar\"}",{}]}]}]},"$undefined","$undefined",true],["",{"children":["project",{"children":[["slug","lunar","d"],{"children":["__PAGE__",{},[["$L1",["$","$L2",null,{"as":"section","maxWidth":"m","horizontal":"center","gap":"l","children":[["$","script",null,{"type":"application/ld+json","suppressHydrationWarning":true,"dangerouslySetInnerHTML":{"__html":"{\"@context\":\"https://schema.org\",\"@type\":\"BlogPosting\",\"headline\":\"𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕\",\"datePublished\":\"2025-06-01\",\"dateModified\":\"2025-06-01\",\"description\":\"𝙳𝚎𝚟𝚎𝚕𝚘𝚙𝚖𝚎𝚗𝚝 𝚘𝚏 𝚊𝚗 𝙰𝙸-𝚙𝚘𝚠𝚎𝚛𝚎𝚍 𝚟𝚘𝚒𝚌𝚎 𝚌𝚑𝚊𝚗𝚐𝚎𝚛 𝚖𝚘𝚍𝚎𝚕 𝚜𝚙𝚎𝚌𝚒𝚏𝚒𝚌𝚊𝚕𝚕𝚢 𝚍𝚎𝚜𝚒𝚐𝚗𝚎𝚍 𝚏𝚘𝚛 𝚎𝚏𝚏𝚎𝚌𝚝𝚒𝚟𝚎𝚕𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚒𝚗𝚐.\",\"image\":\"https://demo.magic-portfolio.com/og?title=𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕\",\"url\":\"https://demo.magic-portfolio.com/project/lunar\",\"author\":{\"@type\":\"Person\",\"name\":\"𝓘𝓼𝓼𝓪𝓬 𝓜𝓸𝓼𝓮𝓼 𝓓\"}}"}}],["$","$L2",null,{"maxWidth":"m","gap":"16","children":[["$","$L3",null,{"href":"/project","variant":"tertiary","weight":"default","size":"s","prefixIcon":"chevronLeft","children":"Projects"}],["$","$L4",null,{"variant":"display-strong-s","children":"𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕"}]]}],["$","$L5",null,{"style":{"maxWidth":"768px","margin":"0 auto"},"children":["$","$L6",null,{"priority":true,"aspectRatio":"16 / 9","radius":"m","alt":"image","src":"/projects/Lunar-Model.mp4"}]}],["$","$L2",null,{"style":{"margin":"auto"},"as":"article","maxWidth":"m","children":[["$","$L5",null,{"gap":"12","marginBottom":"24","vertical":"center","children":[["$","$L7",null,{"reverse":true,"avatars":[{"src":"/about/me.jpg"},{"src":"/about/Dharani.jpg"}],"size":"m"}],["$","$L8",null,{"variant":"body-default-s","onBackground":"neutral-weak","children":"June 1, 2025"}]]}],"$L9"]}],["$","$La",null,{}]]}],[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/4612b5a83fc9ad30.css","precedence":"next","crossOrigin":"$undefined"}]]],null],null]},[null,["$","$Lb",null,{"parallelRouterKey":"children","segmentPath":["children","project","children","$c","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$Ld",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined"}]],null]},[null,["$","$Lb",null,{"parallelRouterKey":"children","segmentPath":["children","project","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$Ld",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined"}]],null]},[[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/15321eadbcfb15cf.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","1",{"rel":"stylesheet","href":"/_next/static/css/845771c36a659ef2.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","2",{"rel":"stylesheet","href":"/_next/static/css/a5c471f6f9fb2804.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","3",{"rel":"stylesheet","href":"/_next/static/css/e578cf952a0222b2.css","precedence":"next","crossOrigin":"$undefined"}]],"$Le"],null],null],["$Lf",null]]]] 10:I[6995,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"ToastProvider"] 11:I[124,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Background"] 12:I[9295,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"Header"] 13:I[1844,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"RouteGuard"] 14:I[9511,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"SmartLink"] 15:I[7868,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"IconButton"] 16:I[1288,["665","static/chunks/f97e080b-82142bce571282c5.js","240","static/chunks/53c13509-eaf564bb5542b29d.js","516","static/chunks/f7333993-771a495057fa5276.js","464","static/chunks/464-27062b5d77534a78.js","835","static/chunks/835-8fb4eaa6b59c2403.js","7","static/chunks/7-71c345ad3bf92479.js","854","static/chunks/854-6f236f00c3593074.js","925","static/chunks/app/project/%5Bslug%5D/page-77da0be236898f34.js"],"HeadingLink"] e:["$","$L5",null,{"as":"html","lang":"en","background":"page","data-neutral":"slate","data-brand":"violet","data-accent":"pink","data-solid":"contrast","data-solid-style":"plastic","data-theme":"dark","data-border":"playful","data-surface":"translucent","data-transition":"all","className":"__variable_f367f3 __variable_a06722","children":["$","$L10",null,{"children":["$","$L2",null,{"style":{"minHeight":"100vh"},"as":"body","fillWidth":true,"margin":"0","padding":"0","children":[["$","$L11",null,{"mask":{"cursor":true,"x":0,"y":0,"radius":65},"gradient":{"display":true,"x":50,"y":10,"width":100,"height":100,"tilt":0,"colorStart":"brand-background-strong","colorEnd":"static-transparent","opacity":60},"dots":{"display":true,"color":"brand-on-background-weak","size":2,"opacity":20},"grid":{"display":false,"color":"neutral-alpha-weak","width":"$undefined","height":"$undefined","opacity":100},"lines":{"display":false,"opacity":100}}],["$","$L5",null,{"fillWidth":true,"minHeight":"16"}],["$","$L12",null,{}],["$","$L5",null,{"position":"relative","zIndex":0,"fillWidth":true,"paddingY":"l","paddingX":"l","horizontal":"center","flex":1,"children":["$","$L5",null,{"horizontal":"center","fillWidth":true,"minHeight":"0","children":["$","$L13",null,{"children":["$","$Lb",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$Ld",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":["$","$L2",null,{"as":"section","fill":true,"center":true,"paddingBottom":"160","children":[["$","$L8",null,{"marginBottom":"s","variant":"display-strong-xl","children":"404"}],["$","$L4",null,{"marginBottom":"l","variant":"display-default-xs","children":"Page Not Found"}],["$","$L8",null,{"onBackground":"neutral-weak","children":"The page you are looking for does not exist."}]]}],"notFoundStyles":[]}]}]}]}],["$","$L5",null,{"as":"footer","position":"relative","fillWidth":true,"padding":"8","horizontal":"center","mobileDirection":"column","children":[["$","$L5",null,{"className":"Footer_mobile__TYNqJ","maxWidth":"m","paddingY":"8","paddingX":"16","gap":"16","horizontal":"space-between","vertical":"center","children":[["$","$L8",null,{"variant":"body-default-s","onBackground":"neutral-strong","children":[["$","$L8",null,{"onBackground":"neutral-weak","children":["© ",2025," /"]}],["$","$L8",null,{"paddingX":"4","children":"𝓘𝓼𝓼𝓪𝓬 𝓜𝓸𝓼𝓮𝓼 𝓓"}],["$","$L8",null,{"onBackground":"neutral-weak","children":["/ My"," ",["$","$L14",null,{"style":{"marginLeft":"-0.125rem"},"href":"hhttps://github.com/Issac-Moses/Issac-Moses-Portfolio","children":"PortFolio"}]]}]]}],["$","$L5",null,{"gap":"16","children":[["$","$L15","𝙶𝚒𝚝𝙷𝚞𝚋",{"href":"https://github.com/Issac-Moses","icon":"github","tooltip":"𝙶𝚒𝚝𝙷𝚞𝚋","size":"s","variant":"ghost"}],["$","$L15","𝙻𝚒𝚗𝚔𝚎𝚍𝙸𝚗",{"href":"https://www.linkedin.com/in/i%EF%BD%93%EF%BD%93-a-c-m-%E5%8F%A3%EF%BD%93%E3%83%A2%EF%BD%93-d-12837831b/","icon":"linkedin","tooltip":"𝙻𝚒𝚗𝚔𝚎𝚍𝙸𝚗","size":"s","variant":"ghost"}],"",["$","$L15","𝙴𝚖𝚊𝚒𝚕",{"href":"mailto:issacmoses19082005@gmail.com","icon":"email","tooltip":"𝙴𝚖𝚊𝚒𝚕","size":"s","variant":"ghost"}]]}]]}],["$","$L5",null,{"height":"80","show":"s"}]]}]]}]}]}] 9:[["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":1,"id":"-","children":"𝐅𝐞𝐝𝐞𝐫𝐚𝐭𝐞𝐝 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐏𝐫𝐢𝐯𝐚𝐜𝐲-𝐏𝐫𝐞𝐬𝐞𝐫𝐯𝐢𝐧𝐠 𝐅𝐚𝐜𝐢𝐚𝐥 𝐑𝐞𝐜𝐨𝐠𝐧𝐢𝐭𝐢𝐨𝐧 𝐢𝐧 𝐀𝐭𝐭𝐞𝐧𝐝𝐚𝐧𝐜𝐞 𝐒𝐲𝐬𝐭𝐞𝐦"}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"table-of-contents","children":"Table of Contents"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":["$","a",null,{"href":"#introduction","children":"Introduction"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#motivation","children":"Motivation"}]}],"\n",["$","li",null,{"children":[["$","a",null,{"href":"#background","children":"Background"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":["$","a",null,{"href":"#facial-recognition","children":"Facial Recognition"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#privacy-concerns","children":"Privacy Concerns"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#federated-learning","children":"Federated Learning"}]}],"\n"]}],"\n"]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#system-architecture","children":"System Architecture"}]}],"\n",["$","li",null,{"children":[["$","a",null,{"href":"#implementation-details","children":"Implementation Details"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":["$","a",null,{"href":"#1-local-model-training","children":"1. Local Model Training"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#2-federated-aggregation","children":"2. Federated Aggregation"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#3-model-deployment","children":"3. Model Deployment"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#4-attendance-logging","children":"4. Attendance Logging"}]}],"\n"]}],"\n"]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#challenges-and-solutions","children":"Challenges and Solutions"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#evaluation-metrics","children":"Evaluation Metrics"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#use-cases","children":"Use Cases"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#conclusion","children":"Conclusion"}]}],"\n",["$","li",null,{"children":["$","a",null,{"href":"#references","children":"References"}]}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"introduction","children":"Introduction"}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":["Facial recognition-based attendance systems are increasingly adopted in educational institutions and workplaces for their efficiency and automation. However, centralizing facial data raises ",["$","strong",null,{"children":"serious privacy concerns"}],"."]}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":[["$","strong",null,{"children":"Federated Learning (FL)"}]," allows multiple clients (e.g., user devices or edge servers) to collaboratively train a global machine learning model ",["$","strong",null,{"children":"without sharing raw data"}],", making it an ideal solution for privacy-preserving systems."]}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":["This project proposes a ",["$","strong",null,{"children":"federated learning-based facial recognition system"}]," for attendance tracking, which ensures user privacy while maintaining high accuracy in recognition."]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"motivation","children":"Motivation"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Privacy Preservation:"}]," Sensitive facial images remain on local devices."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Security:"}]," Reduces risk of data breaches by avoiding centralized storage."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Compliance:"}]," Aligns with regulations like GDPR, HIPAA, and other privacy laws."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Decentralized Learning:"}]," Enables scalable training across multiple devices."]}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"background","children":"Background"}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"facial-recognition","children":"Facial Recognition"}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":"Facial recognition involves detecting, encoding, and matching faces in images or video frames. Typical steps include:"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Face Detection:"}]," Identify faces using methods like Haar Cascades, MTCNN, or YOLO."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Feature Extraction:"}]," Convert detected faces into numerical embeddings using CNNs (e.g., FaceNet, ArcFace)."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Matching and Classification:"}]," Compare embeddings with registered user database to identify individuals."]}],"\n"]}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"privacy-concerns","children":"Privacy Concerns"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":["Centralized databases of facial images are vulnerable to ",["$","strong",null,{"children":"hacking, misuse, and leaks"}],"."]}],"\n",["$","li",null,{"children":"Sharing raw data across servers violates user privacy."}],"\n",["$","li",null,{"children":"Regulatory compliance demands minimal exposure of personal data."}],"\n"]}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"federated-learning","children":"Federated Learning"}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":"Federated Learning is a decentralized ML approach where:"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"Each client trains a local model using its own data."}],"\n",["$","li",null,{"children":["Clients share ",["$","strong",null,{"children":"model updates (gradients or weights)"}]," instead of raw data."]}],"\n",["$","li",null,{"children":"A central server aggregates updates to form a global model."}],"\n",["$","li",null,{"children":"The global model is redistributed to clients iteratively."}],"\n"]}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":["$","strong",null,{"children":"Advantages for Facial Recognition:"}]}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"No raw images leave the client device."}],"\n",["$","li",null,{"children":"Training is distributed, reducing server computational load."}],"\n",["$","li",null,{"children":"Enables continuous learning without compromising privacy."}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"system-architecture","children":"System Architecture"}],"\n",["$","pre",null,{"children":["$","code",null,{"className":"language-bash","children":" Client Devices (Edge Nodes)\n │\n ├── Local Face Detection & Recognition Model\n ├── Local Training with Private Data\n │\n └── Sends Model Updates → Central Server (Federated Aggregator)\n │\n ├── Aggregates Weights (FedAvg / FedProx)\n └── Updates Global Model\n │\n └── Distributes Updated Model to Clients\n"}]}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Client Devices:"}]," Smartphones, tablets, or local terminals where facial data is captured."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Federated Aggregator:"}]," Server aggregates model weights and coordinates training rounds."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Global Model:"}]," Continuously improved facial recognition model shared with all clients."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Attendance Logging:"}]," After identification, attendance is recorded in a secure database."]}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"implementation-details","children":"Implementation Details"}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"1-local-model-training","children":"1. Local Model Training"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"Each client device collects facial images of users locally."}],"\n",["$","li",null,{"children":"Preprocessing includes resizing, normalization, and augmentation."}],"\n",["$","li",null,{"children":["Local training uses a ",["$","strong",null,{"children":"CNN-based model"}]," (e.g., MobileFaceNet for efficiency)."]}],"\n",["$","li",null,{"children":["Loss function: ",["$","strong",null,{"children":"Cross-Entropy"}]," or ",["$","strong",null,{"children":"Triplet Loss"}]," for embeddings."]}],"\n"]}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"2-federated-aggregation","children":"2. Federated Aggregation"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"Model weights are transmitted (not raw data) to the central server."}],"\n",["$","li",null,{"children":["Aggregation strategies:","\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"FedAvg:"}]," Weighted averaging of local model updates."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"FedProx:"}]," Handles non-IID data across clients."]}],"\n"]}],"\n"]}],"\n",["$","li",null,{"children":"After aggregation, the updated global model is redistributed."}],"\n"]}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"3-model-deployment","children":"3. Model Deployment"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"The global model is deployed on client devices for inference."}],"\n",["$","li",null,{"children":["Edge inference ensures ",["$","strong",null,{"children":"low latency"}]," for real-time attendance recognition."]}],"\n",["$","li",null,{"children":"Model updates are periodic or triggered by new data availability."}],"\n"]}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":3,"id":"4-attendance-logging","children":"4. Attendance Logging"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":"Recognized faces trigger secure logging of attendance."}],"\n",["$","li",null,{"children":["Optional integration with ",["$","strong",null,{"children":"Google Sheets"}],", ",["$","strong",null,{"children":"SQL databases"}],", or ",["$","strong",null,{"children":"cloud storage"}],"."]}],"\n",["$","li",null,{"children":"All logs exclude sensitive image data, storing only anonymized identifiers and timestamps."}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"evaluation-metrics","children":"Evaluation Metrics"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Accuracy:"}]," Correct identification of faces."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Precision, Recall, F1-Score:"}]," For each class/user."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Communication Efficiency:"}]," Bytes transferred per training round."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Latency:"}]," Time for recognition and attendance logging."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Privacy Metrics:"}]," Ensuring no raw facial images leave client devices."]}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"use-cases","children":"Use Cases"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Educational Institutions:"}]," Secure and automated student attendance."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Corporate Offices:"}]," Privacy-preserving employee attendance monitoring."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Event Management:"}]," Tracking participants without centralizing sensitive data."]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Healthcare Facilities:"}]," Staff identification without compromising patient data privacy."]}],"\n"]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"conclusion","children":"Conclusion"}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":["The ",["$","strong",null,{"children":"federated learning-based facial recognition system"}]," provides a ",["$","strong",null,{"children":"privacy-preserving, decentralized solution"}]," for attendance tracking. By keeping sensitive facial data local and only sharing model updates, the system ensures security, scalability, and compliance with privacy regulations while maintaining high recognition accuracy."]}],"\n",["$","$L8",null,{"style":{"lineHeight":"175%"},"variant":"body-default-m","onBackground":"neutral-medium","marginTop":"8","marginBottom":"12","children":["This framework demonstrates that ",["$","strong",null,{"children":"privacy and AI can coexist"}],", enabling modern attendance systems without sacrificing personal data protection."]}],"\n",["$","hr",null,{}],"\n",["$","$L16",null,{"style":{"marginTop":"var(--static-space-24)","marginBottom":"var(--static-space-12)"},"level":2,"id":"references","children":"References"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":["Kairouz, P., McMahan, H. B., et al., ",["$","em",null,{"children":"Advances and Open Problems in Federated Learning"}],", Foundations and Trends in Machine Learning, 2021."]}],"\n",["$","li",null,{"children":["Schroff, F., Kalenichenko, D., & Philbin, J., ",["$","em",null,{"children":"FaceNet: A Unified Embedding for Face Recognition and Clustering"}],", CVPR, 2015."]}],"\n",["$","li",null,{"children":["Bonawitz, K., Eichner, H., et al., ",["$","em",null,{"children":"Federated Learning: Challenges, Methods, and Future Directions"}],", IEEE, 2019."]}],"\n",["$","li",null,{"children":["McMahan, H. B., et al., ",["$","em",null,{"children":"Communication-Efficient Learning of Deep Networks from Decentralized Data"}],", AISTATS, 2017."]}],"\n",["$","li",null,{"children":["Google AI Blog, ",["$","em",null,{"children":"Federated Learning for On-Device AI"}],", 2017."]}],"\n",["$","li",null,{"children":["ArcFace: Deng, Jiankang, et al., ",["$","em",null,{"children":"ArcFace: Additive Angular Margin Loss for Deep Face Recognition"}],", CVPR, 2019."]}],"\n"]}]] f:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕"}],["$","meta","3",{"name":"description","content":"𝙳𝚎𝚟𝚎𝚕𝚘𝚙𝚖𝚎𝚗𝚝 𝚘𝚏 𝚊𝚗 𝙰𝙸-𝚙𝚘𝚠𝚎𝚛𝚎𝚍 𝚟𝚘𝚒𝚌𝚎 𝚌𝚑𝚊𝚗𝚐𝚎𝚛 𝚖𝚘𝚍𝚎𝚕 𝚜𝚙𝚎𝚌𝚒𝚏𝚒𝚌𝚊𝚕𝚕𝚢 𝚍𝚎𝚜𝚒𝚐𝚗𝚎𝚍 𝚏𝚘𝚛 𝚎𝚏𝚏𝚎𝚌𝚝𝚒𝚟𝚎𝚕𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚒𝚗𝚐."}],["$","meta","4",{"name":"robots","content":"index, follow"}],["$","meta","5",{"name":"googlebot","content":"index, follow, max-video-preview:-1, max-image-preview:large, max-snippet:-1"}],["$","meta","6",{"property":"og:title","content":"𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕"}],["$","meta","7",{"property":"og:description","content":"𝙳𝚎𝚟𝚎𝚕𝚘𝚙𝚖𝚎𝚗𝚝 𝚘𝚏 𝚊𝚗 𝙰𝙸-𝚙𝚘𝚠𝚎𝚛𝚎𝚍 𝚟𝚘𝚒𝚌𝚎 𝚌𝚑𝚊𝚗𝚐𝚎𝚛 𝚖𝚘𝚍𝚎𝚕 𝚜𝚙𝚎𝚌𝚒𝚏𝚒𝚌𝚊𝚕𝚕𝚢 𝚍𝚎𝚜𝚒𝚐𝚗𝚎𝚍 𝚏𝚘𝚛 𝚎𝚏𝚏𝚎𝚌𝚝𝚒𝚟𝚎𝚕𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚒𝚗𝚐."}],["$","meta","8",{"property":"og:url","content":"https://demo.magic-portfolio.com/project/lunar"}],["$","meta","9",{"property":"og:image","content":"https://demo.magic-portfolio.com/og?title=%F0%9D%99%BB%F0%9D%9A%9E%F0%9D%9A%97%F0%9D%9A%8A%F0%9D%9A%9B%20-%20%F0%9D%99%B5%F0%9D%9A%8E%F0%9D%9A%96%F0%9D%9A%8A%F0%9D%9A%95%F0%9D%9A%8E%20%F0%9D%9A%81%F0%9D%9A%8E%F0%9D%9A%9D%F0%9D%9A%9B%F0%9D%9A%92%F0%9D%9A%8E%F0%9D%9A%9F%F0%9D%9A%8A%F0%9D%9A%95%20%F0%9D%9A%85%F0%9D%9A%98%F0%9D%9A%92%F0%9D%9A%8C%F0%9D%9A%8E%20%F0%9D%99%B2%F0%9D%9A%91%F0%9D%9A%8A%F0%9D%9A%97%F0%9D%9A%90%F0%9D%9A%8E%F0%9D%9A%9B%20%F0%9D%99%BC%F0%9D%9A%98%F0%9D%9A%8D%F0%9D%9A%8E%F0%9D%9A%95"}],["$","meta","10",{"property":"og:type","content":"article"}],["$","meta","11",{"property":"article:published_time","content":"2025-06-01"}],["$","meta","12",{"name":"twitter:card","content":"summary_large_image"}],["$","meta","13",{"name":"twitter:title","content":"𝙻𝚞𝚗𝚊𝚛 - 𝙵𝚎𝚖𝚊𝚕𝚎 𝚁𝚎𝚝𝚛𝚒𝚎𝚟𝚊𝚕 𝚅𝚘𝚒𝚌𝚎 𝙲𝚑𝚊𝚗𝚐𝚎𝚛 𝙼𝚘𝚍𝚎𝚕"}],["$","meta","14",{"name":"twitter:description","content":"𝙳𝚎𝚟𝚎𝚕𝚘𝚙𝚖𝚎𝚗𝚝 𝚘𝚏 𝚊𝚗 𝙰𝙸-𝚙𝚘𝚠𝚎𝚛𝚎𝚍 𝚟𝚘𝚒𝚌𝚎 𝚌𝚑𝚊𝚗𝚐𝚎𝚛 𝚖𝚘𝚍𝚎𝚕 𝚜𝚙𝚎𝚌𝚒𝚏𝚒𝚌𝚊𝚕𝚕𝚢 𝚍𝚎𝚜𝚒𝚐𝚗𝚎𝚍 𝚏𝚘𝚛 𝚎𝚏𝚏𝚎𝚌𝚝𝚒𝚟𝚎𝚕𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚒𝚗𝚐."}],["$","meta","15",{"name":"twitter:image","content":"https://demo.magic-portfolio.com/og?title=%F0%9D%99%BB%F0%9D%9A%9E%F0%9D%9A%97%F0%9D%9A%8A%F0%9D%9A%9B%20-%20%F0%9D%99%B5%F0%9D%9A%8E%F0%9D%9A%96%F0%9D%9A%8A%F0%9D%9A%95%F0%9D%9A%8E%20%F0%9D%9A%81%F0%9D%9A%8E%F0%9D%9A%9D%F0%9D%9A%9B%F0%9D%9A%92%F0%9D%9A%8E%F0%9D%9A%9F%F0%9D%9A%8A%F0%9D%9A%95%20%F0%9D%9A%85%F0%9D%9A%98%F0%9D%9A%92%F0%9D%9A%8C%F0%9D%9A%8E%20%F0%9D%99%B2%F0%9D%9A%91%F0%9D%9A%8A%F0%9D%9A%97%F0%9D%9A%90%F0%9D%9A%8E%F0%9D%9A%9B%20%F0%9D%99%BC%F0%9D%9A%98%F0%9D%9A%8D%F0%9D%9A%8E%F0%9D%9A%95"}],["$","link","16",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"1280x1280"}]] 1:null